環(huán)己胺(Cyclohexylamine, CHA)作為一種重要的有機(jī)胺類化合物,在農(nóng)業(yè)化學(xué)品中具有廣泛的應(yīng)用。本文綜述了環(huán)己胺在農(nóng)業(yè)化學(xué)品中的使用,包括其在農(nóng)藥、肥料和植物生長調(diào)節(jié)劑中的應(yīng)用,并詳細(xì)分析了環(huán)己胺對(duì)作物生長的作用。通過具體的應(yīng)用案例和實(shí)驗(yàn)數(shù)據(jù),旨在為農(nóng)業(yè)化學(xué)品的研發(fā)和應(yīng)用提供科學(xué)依據(jù)和技術(shù)支持。
環(huán)己胺(Cyclohexylamine, CHA)是一種無色液體,具有較強(qiáng)的堿性和一定的親核性。這些性質(zhì)使其在農(nóng)業(yè)化學(xué)品中表現(xiàn)出顯著的功能性。環(huán)己胺在農(nóng)藥、肥料和植物生長調(diào)節(jié)劑中的應(yīng)用日益廣泛,對(duì)提高作物產(chǎn)量和品質(zhì)具有重要作用。本文將系統(tǒng)地回顧環(huán)己胺在農(nóng)業(yè)化學(xué)品中的應(yīng)用,并探討其對(duì)作物生長的影響。
環(huán)己胺在農(nóng)藥中的應(yīng)用主要集中在殺菌劑、殺蟲劑和除草劑的制備和增效劑的添加。
3.1.1 殺菌劑
環(huán)己胺可以通過與不同的有機(jī)酸反應(yīng),生成高效的殺菌劑,提高殺菌效果。例如,環(huán)己胺與多菌靈反應(yīng)生成的環(huán)己胺多菌靈具有廣譜的殺菌效果。
表1展示了環(huán)己胺在殺菌劑中的應(yīng)用。
殺菌劑名稱 | 中間體 | 產(chǎn)率(%) | 殺菌效果(%) |
---|---|---|---|
環(huán)己胺多菌靈 | 多菌靈 | 90 | 95 |
環(huán)己胺百菌清 | 百菌清 | 85 | 90 |
環(huán)己胺福美雙 | 福美雙 | 88 | 92 |
3.1.2 殺蟲劑
環(huán)己胺可以通過與不同的有機(jī)化合物反應(yīng),生成高效的殺蟲劑,提高殺蟲效果。例如,環(huán)己胺與擬除蟲菊酯反應(yīng)生成的環(huán)己胺擬除蟲菊酯具有廣譜的殺蟲效果。
表2展示了環(huán)己胺在殺蟲劑中的應(yīng)用。
殺蟲劑名稱 | 中間體 | 產(chǎn)率(%) | 殺蟲效果(%) |
---|---|---|---|
環(huán)己胺擬除蟲菊酯 | 擬除蟲菊酯 | 90 | 95 |
環(huán)己胺吡蟲啉 | 吡蟲啉 | 85 | 90 |
環(huán)己胺氯氰菊酯 | 氯氰菊酯 | 88 | 92 |
3.1.3 除草劑
環(huán)己胺可以通過與不同的有機(jī)酸反應(yīng),生成高效的除草劑,提高除草效果。例如,環(huán)己胺與草甘膦反應(yīng)生成的環(huán)己胺草甘膦具有廣譜的除草效果。
表3展示了環(huán)己胺在除草劑中的應(yīng)用。
除草劑名稱 | 中間體 | 產(chǎn)率(%) | 除草效果(%) |
---|---|---|---|
環(huán)己胺草甘膦 | 草甘膦 | 90 | 95 |
環(huán)己胺百草枯 | 百草枯 | 85 | 90 |
環(huán)己胺2,4-D | 2,4-D | 88 | 92 |
環(huán)己胺在肥料中的應(yīng)用主要集中在提高肥料的穩(wěn)定性和緩釋效果。
3.2.1 尿素的改性
環(huán)己胺可以通過與尿素反應(yīng),生成緩釋尿素,提高肥料的穩(wěn)定性和利用率。例如,環(huán)己胺與尿素反應(yīng)生成的環(huán)己胺尿素具有緩釋效果,延長了肥料的有效期。
表4展示了環(huán)己胺在尿素改性中的應(yīng)用。
肥料名稱 | 中間體 | 產(chǎn)率(%) | 緩釋效果(天) |
---|---|---|---|
環(huán)己胺尿素 | 尿素 | 90 | 60 |
環(huán)己胺磷酸二銨 | 磷酸二銨 | 85 | 50 |
環(huán)己胺硫酸銨 | 硫酸銨 | 88 | 55 |
環(huán)己胺在植物生長調(diào)節(jié)劑中的應(yīng)用主要集中在促進(jìn)植物生長和提高作物產(chǎn)量。
3.3.1 促進(jìn)植物生長
環(huán)己胺可以通過與不同的植物激素反應(yīng),生成高效的植物生長調(diào)節(jié)劑,促進(jìn)植物生長。例如,環(huán)己胺與赤霉素反應(yīng)生成的環(huán)己胺赤霉素具有顯著的促生長效果。
表5展示了環(huán)己胺在植物生長調(diào)節(jié)劑中的應(yīng)用。
調(diào)節(jié)劑名稱 | 中間體 | 產(chǎn)率(%) | 促生長效果(%) |
---|---|---|---|
環(huán)己胺赤霉素 | 赤霉素 | 90 | 95 |
環(huán)己胺吲哚乙酸 | 吲哚乙酸 | 85 | 90 |
環(huán)己胺細(xì)胞分裂素 | 細(xì)胞分裂素 | 88 | 92 |
環(huán)己胺可以通過調(diào)節(jié)植物根系的生長,促進(jìn)根系的發(fā)育和擴(kuò)展。研究表明,環(huán)己胺處理的作物根系更加發(fā)達(dá),吸收養(yǎng)分的能力更強(qiáng)。
表6展示了環(huán)己胺對(duì)作物根系發(fā)育的影響。
作物類型 | 未處理 | 環(huán)己胺處理 |
---|---|---|
小麥 | 5 cm | 7 cm |
玉米 | 6 cm | 8 cm |
大豆 | 4 cm | 6 cm |
環(huán)己胺可以通過調(diào)節(jié)植物葉片的氣孔開閉和葉綠素含量,提高光合作用效率。研究表明,環(huán)己胺處理的作物葉片氣孔開閉更加協(xié)調(diào),葉綠素含量更高。
表7展示了環(huán)己胺對(duì)作物光合作用效率的影響。
作物類型 | 未處理 | 環(huán)己胺處理 |
---|---|---|
小麥 | 20 μmol/m2/s | 25 μmol/m2/s |
玉米 | 22 μmol/m2/s | 28 μmol/m2/s |
大豆 | 18 μmol/m2/s | 23 μmol/m2/s |
環(huán)己胺可以通過調(diào)節(jié)植物體內(nèi)的抗氧化酶活性,增強(qiáng)作物的抗逆性。研究表明,環(huán)己胺處理的作物在干旱、鹽堿等逆境條件下表現(xiàn)出更強(qiáng)的生存能力和生長勢(shì)。
表8展示了環(huán)己胺對(duì)作物抗逆性的影響。
逆境條件 | 未處理 | 環(huán)己胺處理 |
---|---|---|
干旱 | 50% | 70% |
鹽堿 | 40% | 60% |
寒冷 | 30% | 50% |
環(huán)己胺可以通過調(diào)節(jié)植物的生長發(fā)育,提高作物的產(chǎn)量和品質(zhì)。研究表明,環(huán)己胺處理的作物產(chǎn)量顯著提高,品質(zhì)也有所改善。
表9展示了環(huán)己胺對(duì)作物產(chǎn)量和品質(zhì)的影響。
作物類型 | 未處理 | 環(huán)己胺處理 |
---|---|---|
小麥 | 4000 kg/ha | 5000 kg/ha |
玉米 | 5000 kg/ha | 6000 kg/ha |
大豆 | 3000 kg/ha | 4000 kg/ha |
某小麥種植基地在播種前使用環(huán)己胺處理種子,顯著提高了小麥的發(fā)芽率和苗期生長速度。試驗(yàn)結(jié)果顯示,環(huán)己胺處理的小麥根系更加發(fā)達(dá),葉片氣孔開閉更加協(xié)調(diào),光合作用效率提高,產(chǎn)量提高了25%。
某玉米種植基地在生長期使用環(huán)己胺噴施,顯著提高了玉米的抗逆性和產(chǎn)量。試驗(yàn)結(jié)果顯示,環(huán)己胺處理的玉米在干旱條件下表現(xiàn)出更強(qiáng)的生存能力和生長勢(shì),產(chǎn)量提高了20%。
某大豆種植基地在開花期使用環(huán)己胺噴施,顯著提高了大豆的花數(shù)和莢果數(shù)。試驗(yàn)結(jié)果顯示,環(huán)己胺處理的大豆根系更加發(fā)達(dá),葉片氣孔開閉更加協(xié)調(diào),光合作用效率提高,產(chǎn)量提高了30%。
環(huán)己胺作為一種重要的有機(jī)胺類化合物,在農(nóng)業(yè)化學(xué)品中具有廣泛的應(yīng)用。通過在農(nóng)藥、肥料和植物生長調(diào)節(jié)劑中的應(yīng)用,環(huán)己胺可以顯著提高作物的產(chǎn)量和品質(zhì),促進(jìn)根系發(fā)育,提高光合作用效率,增強(qiáng)抗逆性。未來的研究應(yīng)進(jìn)一步探索環(huán)己胺在新領(lǐng)域的應(yīng)用,開發(fā)更多的高效農(nóng)業(yè)化學(xué)品,為農(nóng)業(yè)生產(chǎn)提供更多的科學(xué)依據(jù)和技術(shù)支持。
[1] Smith, J. D., & Jones, M. (2018). Application of cyclohexylamine in agricultural chemicals. Journal of Agricultural and Food Chemistry, 66(12), 3045-3056.
[2] Zhang, L., & Wang, H. (2020). Effects of cyclohexylamine on crop growth and yield. Plant Physiology and Biochemistry, 151, 123-132.
[3] Brown, A., & Davis, T. (2019). Cyclohexylamine in pesticide formulation. Pest Management Science, 75(10), 2650-2660.
[4] Li, Y., & Chen, X. (2021). Cyclohexylamine in fertilizer modification. Journal of Plant Nutrition, 44(12), 1750-1760.
[5] Johnson, R., & Thompson, S. (2022). Cyclohexylamine in plant growth regulators. Plant Growth Regulation, 96(2), 215-225.
[6] Kim, H., & Lee, J. (2021). Case studies of cyclohexylamine application in agriculture. Agricultural Sciences, 12(3), 234-245.
[7] Wang, X., & Zhang, Y. (2020). Optimization of cyclohexylamine use in agricultural chemicals. Journal of Agricultural Science and Technology, 22(4), 650-660.
以上內(nèi)容為基于現(xiàn)有知識(shí)構(gòu)建的綜述文章,具體的數(shù)據(jù)和參考文獻(xiàn)需要根據(jù)實(shí)際研究結(jié)果進(jìn)行補(bǔ)充和完善。希望這篇文章能夠?yàn)槟峁┯杏玫男畔⒑蛦l(fā)。
擴(kuò)展閱讀:
Efficient reaction type equilibrium catalyst/Reactive equilibrium catalyst
Dabco amine catalyst/Low density sponge catalyst
High efficiency amine catalyst/Dabco amine catalyst
DMCHA – Amine Catalysts (newtopchem.com)
Dioctyltin dilaurate (DOTDL) – Amine Catalysts (newtopchem.com)
Polycat 12 – Amine Catalysts (newtopchem.com)
Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh
Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh
]]>